跳至主要內容

Codeforces Round 655 (Div. 2) B. Omkar and Last Class of Math

AlgorithmCodeforces大约 2 分钟约 614 字全民制作人ikun

B. Omkar and Last Class of Math

In Omkar's last class of math, he learned about the least common multiple, or 𝐿𝐶𝑀 . 𝐿𝐶𝑀(𝑎,𝑏) is the smallest positive integer 𝑥 which is divisible by both 𝑎 and 𝑏 .

Omkar, having a laudably curious mind, immediately thought of a problem involving the 𝐿𝐶𝑀 operation: given an integer 𝑛 , find positive integers 𝑎 and 𝑏 such that 𝑎+𝑏=𝑛 and 𝐿𝐶𝑀(𝑎,𝑏) is the minimum value possible.

Can you help Omkar solve his ludicrously challenging math problem?

Input

Each test contains multiple test cases. The first line contains the number of test cases 𝑡 (1≤𝑡≤10 ). Description of the test cases follows.

Each test case consists of a single integer 𝑛 (2𝑛1092≤𝑛≤10^9 ).

Output

For each test case, output two positive integers 𝑎 and 𝑏 , such that 𝑎+𝑏=𝑛 and 𝐿𝐶𝑀(𝑎,𝑏) is the minimum possible.

题目大意

给你一个n,范围为10910^9,要你去找两个数a,b满足a+b=n,并且a和b的最大公倍数最小。

思路

显然当n为偶数的时候,两个数的最大公倍数的最小值一定是n/2,因为当一个数小于n/2,另一个数大于n-2的时候,最大公倍数是一定会大于n/2的。

当n为奇数的时候,看不出啥规律,只能打表,打表函数为代码中的f函数,我们发现:

  • n为质数的时候,a,b一定为1,n-1。

  • 当n不是质数的时候,b一定是a的倍数,此时可以假设b>a,并且b=ka(k>=2,因为等于1说明n是偶数),则n=a+b=a+ka=(k+1)a,所以a=nk+1a=\frac{n}{k+1},当k增加的时候,a会减小,因为在这种情况下的lcm(a,b)=b,b=nalcm(a,b)=b,b=n-a,所以我们要保证a尽可能大,b才会变小,所以只需要找到第一个能被n整除的数就是答案了

总体的时间复杂度为O(10109)=3105O(10*\sqrt{10^9})=3*10^5

代码

#include <bits/stdc++.h>

using namespace std;

bool is_prime(int x) {
    for (int i = 2; i * i <= x; i++) {
        if (x % i == 0) return false;
    }
    return true;
}

//这个是打表函数
void f() {
    for (int i = 3; i <= 10000; i += 2) {
        if (is_prime(i))continue;
        int res = INT_MAX;
        int x, y;
        for (int j = 1; j < i; j++) {
            int t = lcm(j, i - j);
            if (t < res) {
                res = t;
                x = j, y = i - j;
            }
        }
        cout << i << " " << x << " " << y << endl;
    }
}

void solve() {
    int n;
    cin >> n;
    if (n % 2 == 0) {
        cout << n / 2 << ' ' << n / 2 << endl;
    } else {
        if (is_prime(n)) {
            cout << 1 << " " << n - 1 << endl;
        } else {
            for (int k = 2;; k++) {
                if (n % (k + 1) == 0) {
                    int x=n/(k+1);
                    int y=x*k;
                    cout<<x<<' '<<y<<endl;
                    return;
                }
            }
        }
    }
}

int main() {
#ifndef ONLINE_JUDGE
    freopen("../test.in", "r", stdin);
    freopen("../test.out", "w", stdout);
#endif
//    f();
    int _;
    cin >> _;
    while (_--) solve();

    return 0;
}
上次编辑于:
贡献者: yunfeidog