Codeforces Round 849 (Div. 4) G2. Teleporters (Hard Version)
G2. Teleporters (Hard Version)
Consider the points 0,1,…,𝑛+1 on the number line. There is a teleporter located on each of the points 1,2,…,𝑛 . At point 𝑖 , you can do the following:
Move left one unit: it costs 1 coin. Move right one unit: it costs 1 coin. Use a teleporter at point 𝑖 , if it exists: it costs 𝑎𝑖 coins. As a result, you can choose whether to teleport to point 0 or point 𝑛+1 . Once you use a teleporter, you can't use it again. You have 𝑐 coins, and you start at point 0 . What's the most number of teleporters you can use?
Input
The input consists of multiple test cases. The first line contains an integer 𝑡 (1≤𝑡≤1000 ) — the number of test cases. The descriptions of the test cases follow.
The first line of each test case contains two integers 𝑛 and 𝑐 ( ) — the length of the array and the number of coins you have respectively.
The following line contains 𝑛 space-separated positive integers 𝑎1,𝑎2,…,𝑎𝑛 ( ) — the costs to use the teleporters.
It is guaranteed that the sum of 𝑛 over all test cases does not exceed .
Output
For each test case, output the maximum number of teleporters you can use.
题目大意
给你n个传送门,每个传送门的费用为,在你使用过传送门之后,你可以传送到0或者的位置,每次可以向左或者向右移动一格,这个操作的花费是1,现在给你c个花费,问最多可以使用几次传送门。
思路
先不考虑初始位置是0,假设我们现在就在0或者n+1的位置,那么对于第i个传送器,显然它的代价最小值为,因此在选择传送器的时候,我们可以利用贪心的思想,优先去选择代价最小的,因此需要按照代价从小到大进行排序。我们要找总代价小于等于c的最大个数,因此还可以利用前缀和来优化代码,因为前缀和数组是单调递增的,所以可以去利用二分找到的最大位置。
因为我们的代价数组里面有n-i+1,这种情况是需要先进行一次传送才可以有的,因此我们可以先去枚举第一次使用哪个传送器,然后看用完这个传送器剩下的价值里面还可以去使用多少个传送器。
时间复杂度为
代码
#include <bits/stdc++.h>
#define int long long
using namespace std;
typedef pair<int, int> PII;
void solve() {
int n, c;
cin >> n >> c;
vector<PII> a(n + 1);
for (int i = 1; i <= n; i++) {
int x;
cin >> x;
a[i].first = x + min(i, n +1 - i);
a[i].second = x + i;//作为起点的费用
}
std::sort(a.begin() + 1, a.end());
vector<int> s(n + 1);
for (int i = 1; i <= n; i++) {
s[i] = s[i - 1] + a[i].first;
}
int res =0;
for (int i = 1; i <= n; i++) {//将第i个传送门作为起点
if (a[i].second > c) continue;
int l = 0, r = n;
while (l < r) {
int mid = l + r + 1 >> 1;
int cost = s[mid] + a[i].second;
//看是否包含了i,如果包含了需要去掉
if (i <= mid) cost -= a[i].first;
if (cost<=c) l=mid;
else r=mid-1;
}
if (i>l) l++;//加上起点选的
res= max(res,l);
}
cout<<res<<endl;
}
signed main() {
#ifndef ONLINE_JUDGE
freopen("../test.in", "r", stdin);
freopen("../test.out", "w", stdout);
#endif
int _;
cin >> _;
while (_--) solve();
return 0;
}